
Extended Abstract

Context/Motivation

The complexity of real-world problems is steadily growing, alongside with the computa-
tional power of supercomputers, clusters and graphics processing units. This growth main-
tains a permanent demand on powerful simulation and modelling frameworks, coupled with
robust optimization algorithms; overall, the resolution of advanced real-world problems re-
mains ever more expensive in terms of time and/or money. It is not uncommon to deal with
real-world problems where one evaluation of a candidate solution requires a full laboratory
experiment (e.g., protein’s folding stability optimization [Chaput and Szostak, 2004], ex-
perimental quantum control [Roslund et al., 2009], multi-objective optimization of Diesel
combustion [Yagoubi, 2012]). A most common example of real-world problem consists
of optimally tuning the hyper-parameters of a complex system (e.g., compiler optimiza-
tion [Fursin et al., 2005], job allocations in a computational grid [Tesauro et al., 2007]),
as opposed to using expert hand-crafted parameter settings.

Evolutionary Algorithms (EAs) have been thoroughly investigated in this context due
to their ability to solve complex optimization problems by coupling problem-specific vari-
ation operators and selection operators:
Firstly, a search directed by a population of candidate solutions is quite robust with re-
spect to a moderate noise and multi-modality of the objective function, in contrast to
some classical optimization methods such as quasi-Newton methods.
Secondly, the role of variation operators is to explore the search space of potential solu-
tions, taking into account already retrieved information about the problem. The − usually
randomized − variation operators, together with the representation of the candidate so-
lutions, encapsulate extensive prior knowledge about the problem domain.
Finally, selection is responsible for directing the search toward more promising regions on
the basis of the current solutions, controlling the exploration versus exploitation trade-off.

These features make EAs very flexible and suitable for virtually any optimization
problem provided that parametrized solutions can be comparatively assessed. Specifically,
EAs are meant to address a wide range of optimization problems: involving a unimodal or
multi-modal objective function; with or without noise; in a low- or high-dimensional search
space; constrained or without constraints; involving a stationary or a dynamic objective ;
involving a computationally expensive or cheap objective function; and last but not least,
involving a single or multiple objective functions.

The Evolutionary Computation (EC) community has introduced a variety of approaches
to address all abovementioned types of optimization problems. On the one hand, these
approaches have been empirically validated by practitioners, reporting a number of break-
through applications (see, e.g., [Coello and Lamont, 2004, Yu et al., 2008, Chiong et al., 2011]

among many others). On the other hand, the theoretical properties of some simple variants



of the most successful approaches have been established and related to the first principles of
optimization, specifically the natural gradient [Wierstra et al., 2008, Arnold et al., 2011,
Akimoto and Ollivier, 2013].

In the meanwhile, rare position papers discuss the growing gap between the theory and
the practice of EAs [Michalewicz, 2012]. The latter paper, reflecting the author’s personal
point of view based on 20 years of experience in the field of EC, invites to discuss the
question of self-assessment in EC. It suggests that most generally and like many other
scientific fields, EC is driven by two main forces: research and applications. In practice,
some approaches are known to be the most efficient ones with respect to the current bench-
mark or real-world problems, whereas some other and perhaps less efficient approaches
are considered to have more solid theoretical foundations, or to be more general, more
flexible or more elegant. In this perspective, EC could itself be viewed as a black-box,
non-stationary, multi-objective problem per se, with its deployment being shaped under
simultaneous researcher and practitioner dynamic pressures. Along this line, the EC com-
munity collectively aims at building an optimal Pareto set of optimization approaches.

The lessons learned from multi-objective optimization are that, in order to build a
dense Pareto front, one must mandatorily preserve the population diversity, and avoid
discarding too easily the solutions which are dominated w.r.t. the current objectives.
Despite their shortcomings, some solutions are found to pave the way toward truly non-
dominated solutions in unfrequented regions of the Pareto front. In other words, the
celebrated Exploitation versus Exploration trade-off should be considered at the level of
algorithm design, too. Along this line, the contributions presented in this thesis and
detailed below can be divided into two categories:

In a first category (the exploitation category), we present principled and efficient ex-
tensions of the prominent Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) [Hansen et al., 2003], aimed at surrogate-based single-objective optimization
[Jin, 2005] or surrogate-based multi-objective optimization [Knowles and Nakayama, 2008]

and based on the tight coupling of stochastic optimization and statistical machine
learning [Vapnik, 1995, Joachims, 2005].

In a second category (the exploration category), we present new stochastic optimiza-
tion schemes, based on Adaptive Coordinate Descent, with kernel-based change of
representation, or tackling the CMA-ES hyper-parameter tuning problem as a (very
noisy) optimization problem.

Main Contributions

As already said, the Covariance Matrix Adaptation Evolution Strategy and its variants
are acknowledged to be the most efficient approaches in continuous black-box optimization
[Hansen et al., 2010b]. The first part of the presented contributions (the “exploitation“
part) proceeds by coupling statistical machine learning algorithms with CMA-ES, in or-
der to address specific issues such as surrogate-based optimization and multi-objective
optimization, while preserving all invariance and robustness properties of CMA-ES.



The second part (the ”exploration“ part) investigates independent issues: hyper-
parameter tuning; non-linear adaptive representations; reward-based multi-objective op-
timization.

Coupling CMA-ES with Statistical Machine Learning

One of the main limitations of EAs, the large number of function evaluations required for
a reasonable accuracy of optimization, prevents EAs from being used on computationally
expensive problems, where one evaluation takes more than one second and up to a few
hours or a day1.

A common way to reduce the overall number of function evaluations required to solve
expensive optimization problems is to build surrogate/approximate models and carefully
treat the information available from the evaluated candidate solutions [Box and Wilson, 1951,
Jin, 2005].

ACM-ES In the spirit of the comparison-based CMA-ES approach, we used a comparison-
based surrogate-learning approach, referred to as Ranking SVM [Herbrich et al., 1999,
Joachims, 2005]. The surrogate learning phase thus does not exploit the objective
values of the available solutions, but only their ranks. In this way, the overall
surrogate-based optimization approach is invariant under monotonous transforma-
tions of the objective function, a most desirable property.
A key contribution compared to the state of the art [Runarsson, 2006, Bouzarkouna et al., 2010]

is to reuse the covariance matrix built by CMA-ES itself within Ranking SVM; along
this coupling, the overall approach called ACM-ES inherits CMA-ES invariance un-
der orthogonal transformations of the search space.
A second contribution is to automatically and adaptively control the refreshment
rate of the surrogate model (surrogate lifelength), depending on the empirical error
of the previous surrogate model, under the assumption of a smooth variation of the
optimal (unknown) surrogate along the search.
A third contribution is to interleave surrogate learning with the automatic online
adjustment of the learning hyper-parameters, being reminded that the surrogate
model quality critically depends on the learning hyper-parameters.
The proposed algorithm, extensively benchmarked on the Black-Box Optimization
Benchmarking (BBOB) [Hansen et al., 2010a] framework against classical (BFGS
[Shanno, 1970], NEWUOA [Powell, 2006], GLOBAL [Pal et al., 2012]) and Evolu-
tionary Algorithms, is shown to improve by a factor 2 to 4 on the state of the art.

1 This limitation is especially observable in the special, but quite common case of the unimodal noiseless
continuous optimization, where gradient information is useful and quasi-Newton methods such as BFGS
[Shanno, 1970], proposed 40 years ago, usually outperform most of advanced EAs [Hansen et al., 2010b].
Unfortunately, this has become, directed by natural selection, a common practice in EC community to
not view BFGS as an alternative approach, arguing that, anyway, the latter does not perform well on
multi-modal and noisy functions. This may create a false impression about the performance of EAs in EC
community, but does not create this impression among practitioners who do compare EAs with non-EC
algorithms, such as BFGS and recently proposed NEWOUA [Powell, 2006].



ASM In the same spirit, Aggregated Surrogate Models (ASMs) inspired from the Support
Vector Machine framework are used for multi-objective optimization.
A first approach aims at characterizing the current Pareto-front in the spirit of
[Vapnik, 1995], as follows. On the one hand, One-Class SVM is used to characterize
the (low-dimensional) region of the Pareto front like [Schölkopf et al., 2001]; on the
other hand, Regression SVM [Vapnik, 1995] is used to characterize the distance to
the Pareto front. Both models together are used to estimate the progress toward the
(true) Pareto front, by filtering the offspring estimated on the surrogate.
A second approach uses Ranking SVM to directly learn the Pareto dominance re-
lation. A main originality of the approach compared to the state of the art in
surrogate-based multi-objective optimization, is to characterize the Pareto front us-
ing a single surrogate (as opposed to, using a surrogate for each objective function),
based on preference relations among solutions, e.g., based on Pareto dominance,
Quality Indicators and Decision Maker preferences.
Likewise, an extensive benchmark of the two proposed approaches establishes that
they improve on the state of the art by a factor 2.

Exploratory contributions

Three exploratory contributions inspired from CMA-ES are proposed:

The first one called Adaptive Coordinate Descent (ACiD) hybridizes the simple
Coordinate Descent approach with the CMA-ES adaptation of the problem repre-
sentation.
On the one hand, ACiD demonstrates a linear empirical complexity with respect to
the problem dimensionality (as opposed to, at least quadratic in CMA-ES). On the
other hand, ACiD can be extended to non-linear change of the problem representa-
tion by using the famed kernel trick [Vapnik, 1995].
Comprehensive validation on BBOB shows that ACiD is competitive with CMA-ES.

The second contribution is concerned with multi-objective optimization. In some
cases, the failure of existing approaches is investigated and explained from the weak-
ness of the parent selection procedures.
A multi-objective reward function, measuring how much a parent contributes to
the future populations, is designed and experimented. This approach measuring
the ”value” of an individual as opposed to its instant value, in the perspective of
reinforcement learning [Sutton and Barto, 1998].

Finally, the restart strategies of CMA-ES on multi-modal fitness landscape are an-
alyzed. The optimal restart strategy is viewed as a sequential decision problem,
setting in each restart the two CMA-ES hyper-parameters (the population size and
the initial mutation amplitude). The restart strategy is viewed as (yet another, but
very noisy) optimization problem, and new restart strategies, with adaptive selection
of the most suitable regime of restarts, are defined and validated.


