Dominance-Based Pareto-Surrogate for Multi-Objective Optimization

Ilya Loshchilov^{1,2}, Marc Schoenauer^{1,2}, Michèle Sebag^{2,1}

¹TAO Project-team, INRIA Saclay - Île-de-France

²and Laboratoire de Recherche en Informatique (UMR CNRS 8623) Université Paris-Sud, 91128 Orsay Cedex, France

Simulated Evolution And Learning (SEAL-2010)

Multi-objective CMA-ES (MO-CMA-ES)

- MO-CMA-ES = μ_{mo} independent (1+1)-CMA-ES.
- Each (1+1)-CMA samples new offspring. The size of the temporary population is $2\mu_{mo}$.
- Only μ_{mo} best solutions should be chosen for new population after the hypervolume-based non-dominated sorting.
- Update of CMA individuals takes place.

Global Surrogate Model

- Goal: find the function F(x) which defines the aggregated quality of the solution x in multi-objective case.
- Idea: use F(x) for optimization or filtering to find new prospective solutions.
- An efficient SVM-based approach has been recently proposed.¹

1. Loshchilov, M. Schoenauer, M. Sebag (GECCO 2010). "A Mono Surrogate for Multiobjective Optimization" 🚊 🕨 🌾 🚊 🔗

SVM-informed EMOA: Filtering

- Generate N_{inform} pre-children
- For each pre-children A and the nearest parent B calculate $Gain(A, B) = F_{svm}(A) F_{svm}(B)$
- New children is the point with the maximum value of Gain

Main Idea

Training Data:

 $D = \{(x_i, y_i) | x_i \in \mathbb{R}^p, y_i \in \{-1, +1\}\}_{i=1}^n$ $\langle w, x_i \rangle \ge b + \epsilon \Rightarrow y_i = +1;$ $\langle w, x_i \rangle \le b - \epsilon \Rightarrow y_i = -1;$ Dividing by $\epsilon > 0$: $\langle w, x_i \rangle - b \ge +1 \Rightarrow y_i = +1;$ $\langle w, x_i \rangle - b \le -1 \Rightarrow y_i = -1;$

Optimization Problem: Primal Form

 $\begin{array}{l} \text{Minimize}_{\{w, \xi\}} \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i \\ \text{subject to: } y_i(\langle w, x_i \rangle - b) \geq 1 - \xi_i, \, \xi_i \geq 0 \end{array}$

Optimization Problem: Dual Form

From Lagrange Theorem, instead of minimize F: Minimize_{ α,G } $F - \sum_i \alpha_i G_i$ subject to: $\alpha_i \ge 0, G_i \ge 0$ Leaving the details, **Dual form**: Maximize_{{ α}} $\sum_i^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle$ subject to: $0 \le \alpha_i \le C, \sum_i^n \alpha_i y_i = 0$

Properties

Decision Function:

 $F(x) = sign(\sum_{i}^{n} \alpha_{i} y_{i} \langle x_{i}, x \rangle - b)$ The Dual form may be solved using standard quadratic programming solver.

Non-linear classification with the "Kernel trick"

 $\begin{array}{l} \text{Maximize}_{\{\alpha\}}\sum_{i}^{n}\alpha_{i}-\frac{1}{2}\sum_{i,j=1}^{n}\alpha_{i}\alpha_{j}y_{i}y_{j}K(x_{i},x_{j})\\ \text{subject to: }a_{i}\geq0,\sum_{i}^{n}\alpha_{i}y_{i}=0,\\ \text{where }K(x,x')=_{def}<\Phi(x),\Phi(x')>\text{is the Kernel function}\\ \text{Decision Function: }F(x)=sign(\sum_{i}^{n}\alpha_{i}y_{i}K(x_{i},x)-b) \end{array}$

Non-Linear Classifier: Kernels

- Polynomial: $k(x_i, x_j) = (\langle x_i, x_j \rangle + 1)^d$
- Gaussian or Radial Basis Function: $k(x_i, x_j) = exp(\frac{||x_i x_j||^2}{2\sigma^2})$
- Hyperbolic tangent: $k(x_i, x_j) = tanh(k \langle x_i, x_j \rangle + c)$

Examples for Polynomial (left) and Gaussian (right) Kernels:

< 同 > < 三 > < 三 >

Ranking Support Vector Machine

Find F(x) which preserves the ordering of the training points.

Ranking Support Vector Machine

The simplified formulation with linear number of constraints (one per point) and 1 rank = 1 point

Primal problem

$$\begin{aligned} & \text{Minimize}_{\{w, \xi\}} \frac{1}{2} ||w||^2 + \sum_{i=1}^N C_i \xi_i \\ & \text{subject to} \begin{cases} \langle w, \Phi(x_i) - \Phi(x_{i+1}) \rangle \geq 1 - \xi_i & (i = 1 \dots N - 1) \\ \xi_i \geq 0 & (i = 1 \dots N - 1) \end{cases} \end{aligned}$$

Dual problem

$$\begin{array}{l} \text{Maximize}_{\{\alpha\}}\sum_{i}^{N-1}\alpha_{i}-\sum_{i,j}^{N-1}\alpha_{ij}K(x_{i}-x_{i+1},x_{j}-x_{j+1}))\\ \text{subject to} \quad 0\leq\alpha_{i}\leq C_{i} \ (i=1\ldots N-1) \end{array}$$

Rank Surrogate Function

$$\mathcal{F}(x) = \sum_{i=1}^{N-1} \alpha_i (K(x_i, x) - K(x_{i+1}, x))$$

Ilya Loshchilov, Marc Schoenauer, Michèle Sebag

< □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → </p>
Dominance-Based Pareto-Surrogate for Multi-Objective Optimization 10/ 1

Rank Support Vector Machine

• Goal: Find the function F(x) such that:

if $x_i \succ x_j$ then $F(x_i) > F(x_j)$

, where " \succ " defines the Pareto-dominance relations.

- *F*(*x*) is **invariant** to any "≻"-preserving transformation of objective functions.
- The hypervolume indicator of course is not invariant, at least in the current formulation.

The complexity of the model: How to choose the constraints?

- Learn **all** possible > relations may be too expensive.
- Learn only Primary constraints to build a basic model is the reasonable choice.
- Additionally learn **small number** of the most violated Secondary constraints the way to make the model **smoother**.

Dominance-Based Surrogate

Primary and Secondary constraints

- **Primary dominance constraints** are associated to pairs (x_i, x_j) such that x_j is the nearest neighbor of x_i (in objective space) conditionally to the fact that x_i dominates x_j .
- Secondary dominance constraints are associated to pairs (x_i, x_j) such that x_i belongs to the current Pareto front and x_j belongs to another non-dominated front.

Construction of the surrogate model

- Initialize archive Ω_{active} as the set of **Primary constraints**, and $\Omega_{passive}$ as the set of **Secondary constraints**.
- Optimize the model for $1000 |\Omega_{active}|$ iterations.
- Add the most violated passive contraint from $\Omega_{passive}$ to Ω_{active} and optimize the model for $10 |\Omega_{active}|$ iterations.
- Repeat the last step $0.1|\Omega_{active}|$ times.

Experimental Validation

Surrogate Models:

- ASM aggregated surrogate model based on One-Class SVM and Regression SVM²
- RASM proposed Rank-based SVM

SVM Learning:

- Number of training points: at most $N_{training} = 1000$ points
- Number of iterations: $1000 |\Omega_{active}| + |\Omega_{active}|^2 \approx 2N_{training}^2$
- Kernel function: RBF function with *σ* equal to the average distance of the training points
- The cost of constraint violation: C = 1000

Offspring Selection Procedure:

• Number of pre-children: p = 2 and p = 10

²I. Loshchilov, M. Schoenauer, M. Sebag (GECCO 2010). "A Mono Surrogate for Multiobjective Optimization" => < =>

Table 1. Comparative results of two baseline EMOAs, namely S-NSGA-II and MO-CMA-ES and their ASM and RASM variants. Median number of function evaluations (out of 10 independent runs) to reach Δ Htarget values, normalized by Best: a value of 1 indicates the best result, a value X > 1 indicates that the corresponding algorithm needed X times more evaluations than the best to reach the same precision.

Δ Htarget	1	0.1	0.01	1e-3	1e-4	1	0.1	0.01	1e-3	1e-4
	ZDT1					ZDT2				
Best	1100	3000	5300	7800	38800	1400	4200	6600	8500	32700
S-NSGA-II	1.6	2	2	2.3	1.1	1.8	1.7	1.8	2.3	1.2
ASM-NSGA p=2	1.2	1.5	1.4	1.5	1.5	1.2	1.2	1.2	1.4	1
ASM-NSGA p=10	1	1	1	1		1	1	1	1	
RASM-NSGA p=2	1.2	1.4	1.4	1.6	1	1.3	1.2	1.2	1.5	1
RASM-NSGA p=10	1	1.1	1.1	1.5		1.1	1	1	1.2	
MO-CMA-ES	16.5	14.4	12.3	11.3		14.7	10.7	10	10.1	
ASM-MO-CMA p=2	6.8	8.5	8.3	8		5.9	8.2	7.7	7.5	
ASM-MO-CMA p=10	6.9	10.1	10.4	12.1		5				
RASM-MO-CMA p=2	5.1	7.7	7.6	7.4		5.2				
RASM-MO-CMA p=10	3.6	4.3	4.9	7.2		3.2				
	IHR1					IHR2				
Best	500	2000	35300	41200	50300	1700	7000	12900	52900	
S-NSGA-II	1.6	1.5				1.1	3.2	6.2		
ASM-NSGA p=2	1.2	1.3				1	3.9	4.9		
ASM-NSGA p=10	1	1.5				1.4	6.4	4.6		
RASM-NSGA p=2	1.2	1.2				1.5				
RASM-NSGA p=10	1	1				1.2	5.1	4.8		
MO-CMA-ES	8.2	6.5	1.1	1.2	1.2	5.8	2.7	2.1	1	
ASM-MO-CMA p=2	4.6	2.9	1	1	1	3.1	1.6	1.4	1.1	
ASM-MO-CMA p=10	9.2	6.1	1.3	1.2		5.9	2.6	2.4		
RASM-MO-CMA p=2	2.6	2.3	2.4	2.1		2.2	1	1		
BASM-MO-CMA p=10	1.8	19								

Ilya Loshchilov, Marc Schoenauer, Michèle Sebag

Comparison of original and SVM-informed versions of **NSGA-II** and **MO-CMA-ES** on **ZDT** and **IHR** problems shows:

- SVM-informed versions are 1.5 times faster for p = 2 and 2-5 for p = 10 before the algorithm can find nearly-optimal Pareto points.
- The premature convergence of approximation of optimal μ-distribution is observed, because the global surrogate model deals only with the convergence, but not with the diversity.

Summary

- The speed-up is significant, but limited to the convergence to the optimal Pareto front.
- The model can incorporate "any" kind of preferences: extreme points, "=" relations, Hypervolume Contribution, Decision Maker - defined ≻ relations.

Thank you for your attention!

Questions?

Ilya Loshchilov, Marc Schoenauer, Michèle Sebag Dominance-Based Pareto-Surrogate for Multi-Objective Optimization 18/1