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ABSTRACT
We propose a computationally efficient limited memory Co-
variance Matrix Adaptation Evolution Strategy for large
scale optimization, which we call the LM-CMA-ES. The
LM-CMA-ES is a stochastic, derivative-free algorithm for
numerical optimization of non-linear, non-convex optimiza-
tion problems in continuous domain. Inspired by the limited
memory BFGS method of Liu and Nocedal (1989), the LM-
CMA-ES samples candidate solutions according to a covari-
ance matrix reproduced from m direction vectors selected
during the optimization process. The decomposition of the
covariance matrix into Cholesky factors allows to reduce the
time and memory complexity of the sampling to O(mn),
where n is the number of decision variables. When n is
large (e.g., n > 1000), even relatively small values of m
(e.g., m = 20, 30) are sufficient to efficiently solve fully non-
separable problems and to reduce the overall run-time.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: Artificial Intelligence
Problem Solving, Control Methods, and Search

General Terms
Algorithms

Keywords
Evolution strategies, CMA-ES, large scale optimization,
Cholesky update

1. INTRODUCTION
The Covariance Matrix Adaptation Evolution Strategy

(CMA-ES) is designed to learn dependencies between deci-
sion variables by adapting a covariance matrix which defines
the sampling distribution of candidate solutions [6]. This al-
gorithm constantly demonstrates good performance at var-
ious platforms for comparing continuous optimizers such as

Author’s version
.

the Black-Box Optimization Benchmarking (BBOB) work-
shop [2, 18] and the Special Session at Congress on Evo-
lutionary Computation [5, 16]. The CMA-ES was also ex-
tended to noisy [7], expensive [1, 17] and multi-objective
optimization [12].

The principle advantage of the CMA-ES, the learning of
dependencies between n decision variables, also forms its
main practical limitations such as O(n2) memory storage
and O(n2) computational complexity per function evalua-
tion [21]. These limitations may preclude the use of the
CMA-ES for computationally cheap but large scale opti-
mization problems (e.g., with n > 100) if the internal com-
putational cost of CMA-ES is greater than the cost of one
function evaluation. On non-trivial large scale problems
with n > 10000 not only the internal computational cost
of the CMA-ES becomes significant but it is becoming sim-
ply impossible to efficiently store the covariance matrix in
memory. One may argue that there are very few known con-
tinuous domain real-world problems of that huge dimension-
ality. This situation probably will not change much before
practitioners have a set of tools that are able to efficiently
search in such huge search spaces.

Several evolution strategies (ESs) have been proposed to
deal with large scale optimization problems: O(n) time and
space complexity algorithms such as separable CMA-ES (sep-
CMA-ES [21]) and linear time Natural Evolution Strategy
(R1-NES [23]), L-CMA-ES [14] withO(m2n) time andO(mn)
space complexity, where only m dominant eigen-pairs of the
covariance matrix are computed. The sep-CMA-ES learns
only the scaling of variables. The R1-NES learns only the
predominant eigen-direction. The L-CMA-ES learnsm dom-
inant eigen-pairs, but its O(m2n) sampling complexity prac-
tically ends up with O(n2) when m =

√
n as studied in [14]

for non-separable problems where multiple adaptation direc-
tions are required.

The problem of growing time and space complexity when
optimizing large scale problems is not new. It was addressed
in gradient-based optimization community when it became
clear that for n > 1000 the storage of the approximate
inverse Hessian matrix precludes the use of quasi-Newton
methods such as Broyden–Fletcher-Goldfarb–Shanno (BFGS)
method [22]. As a solution, it was proposed not to store the
matrix but to reconstruct it using information from the last
m iterations [19]. The final algorithm called the limited
memory BFGS algorithm (L-BFGS or LM-BFGS) is still
considered to be the state-of-the-art of large scale gradient-
based optimization [15]. In this paper, we demonstrate that
a very similar idea can be used to reconstruct the covari-



ance matrix in the CMA-ES to reduce the time and space
complexity to O(mn).
The paper is organized as follows. Section 2 reviews Evo-

lution Strategies (ESs) proposed for large scale optimization.
The LM-CMA-ES algorithm is described in section 3. The
experimental validation of LM-CMA-ES is reported and dis-
cussed in section 4. Section 5 concludes the paper.

2. EVOLUTION STRATEGIES FOR LARGE
SCALE OPTIMIZATION

Historically, first Evolution Strategies [20] were designed
to perform the search without learning dependencies be-
tween variables which is a more recent development that
gradually led to the CMA-ES algorithm [8, 6]. In this sec-
tion, we discuss in detail the CMA-ES algorithm and its
state-of-the-art derivatives for large scale optimization. For
a recent comprehensible overview of Evolution Strategies,
the interested reader is referred to [11].

2.1 The CMA-ES
The Covariance Matrix Adaptation Evolution Strategy [8,

9, 6] is probably the most popular and in overall the most
efficient Evolution Strategy.
The (µ/µw, λ)-CMA-ES is outlined in Algorithm 1. At

iteration t of CMA-ES, a mean mt of the mutation distribu-
tion (can be interpreted as an estimation of the optimum) is
used to generate its k-th out of λ candidate solution xk ∈ Rn

(line 5) by adding a random Gaussian mutation defined by
a (positive definite) covariance matrix Ct ∈ Rn×n as

xt
k = N

(
mt, σt2Ct

)
= mt + σtN

(
0,Ct) , (1)

where σt is a mutation step-size. These λ solutions then
should be evaluated on an objective function f (line 6). The
old mean of the mutation distribution is stored in mt and a
new mean mt+1 is computed as a weighted sum of the best
µ parent individuals selected among λ generated offspring
individuals (line 7). The weights w are used to control the
impact of selected individuals, weights are usually higher for
better ranked individuals (line 1).
The procedure of the adaptation of the step-size σt in

CMA-ES is inherited from the Cumulative Step-Size Adap-
tation Evolution Strategy (CSA-ES) [8] and is controlled

by evolution path pt+1
σ . Successful mutation steps mt+1−mt

σt

(line 8) are tracked in the space of sampling, i.e., in the
isotropic coordinate system defined by principal components
of the covariance matrix Ct. To update the evolution path
pt+1
σ a decay/relaxation factor cσ is used to decrease the

importance of previously performed steps with time. The
step-size update rule increases the step-size if the length of
the evolution path pt+1

σ is longer than the expected length of
the evolution path under random selection E ∥N (0, I )∥, and
decreases otherwise (line 13). Expectation of ∥N (0, I )∥ is
approximated by

√
n(1− 1

4n
+ 1

21n2 ). A damping parameter
dσ controls the change of the step-size.
The covariance matrix update consists of two parts (line

12): rank-one update [9] and rank-µ update [6]. The rank-
one update computes evolution path pt+1

c of successful moves

of the mean mt+1−mt

σt of the mutation distribution in the
given coordinate system (line 10), in a similar way as the
evolution path pt+1

σ of the step-size. To stall the update of
pt+1
c when σ increases rapidly, a hσ trigger is used (line 9).

Algorithm 1 The (µ/µw, λ)-CMA-ES

1: given n ∈ N+, λ = 4 + ⌊3lnn⌋, µ = ⌊λ/2⌋, wi =
ln(µ+ 1

2
)−ln i∑µ

j=1(ln(µ+
1
2
)−ln j)

for i = 1 . . . µ, µw = 1∑µ
i=1 w2

i
, cσ =

µw+2
n+µw+3

, dσ = 1+ cσ +2max(0,
√

µw−1
n+1

− 1), cc = 4
n+4

,

c1 = 2min(1,λ/6)

(n+1.3)2+µw
, cµ = 2 (µw−2+1/µw)

(n+2)2+µw

2: initialize mt=0 ∈ Rn, σt=0 > 0,pt=0
σ = 0,pt=0

c =
0,Ct=0 = I, t← 0

3: repeat
4: for k = 1, . . . , λ do
5: xk = mt + σtN

(
0,Ct

)
6: fk = f(xk)
7: mt+1 ←

∑µ
i=1 wixi:λ // the symbol i : λ denotes i-th

best individual on f

8: pt+1
σ ← (1− cσ)p

t
σ +

√
cσ(2− cσ)

√
µwC

t− 1
2 mt+1−mt

σt

9: hσ = 11∥pt+1
σ ∥<

√
1−(1−cσ)2(t+1)(1.4+ 2

n+1
) E∥N(0,I )∥

10: pt+1
c ← (1− cc)p

t
c + hσ

√
cc(2− cc)

√
µw

mt+1−mt

σt

11: Cµ =
∑µ

i=1 wi
xi:λ−mt

σt × (xi:λ−mt)T

σt

12: Ct+1 = (1−c1−cµ)C
t+c1 pt+1

c pt+1
c

T︸ ︷︷ ︸
rank−one update

+cµC
+
µ︸︷︷︸

rank−µ update

13: σt+1 ← σtexp( cσ
dσ

(
∥pt+1

σ ∥
E∥N(0,I )∥ − 1))

14: t← t+ 1
15: until stopping criterion is met

The rank-µ update computes a covariance matrix Cµ as
a weighted sum of covariances of successful steps of µ best
individuals (line 11). The update of C itself is a replace of
previously accumulated information by a new one with cor-
responding weights of importance (line 12): c1 for covari-

ance matrix pt+1
c pt+1

c
T
of rank-one update and cµ for Cµ of

rank-µ update [6] such that c1 + cµ ≤ 1. Recently it was
proposed to also take into account unsuccessful mutations
in the ”active” rank-µ update [10, 13].

In CMA-ES, the factorization of the covariance C into
AAT = C is needed to sample the multivariate normal dis-
tribution (line 5). The eigendecomposition with O(n3) com-
plexity is used for the factorization. Already in the original
CMA-ES it was proposed to perform the eigendecomposi-
tion every n/10 generations (not shown in Algorithm 1) to
reduce the complexity per function evaluation to O(n2)

2.2 Large Scale Variants
The original CMA-ES has O(n2) time and space com-

plexity that precludes its applications for large scale opti-
mization with n ≫ 100. To enable the algorithm for large
scale optimization, a linear time and space version called
sep-CMA-ES was proposed in [21]. The algorithm does not
learn dependencies but the scaling of variables by restraining
the covariance matrix update to the diagonal elements:

ct+1
jj = (1− ccov)c

t
jj +

1

µcov

(
pt+1
c

)2
j
+

cccov

(
1− 1

µccov

) µ∑
i=1

wic
t
jj

(
zi:λ

t+1)2
j
, j = 1, . . . , n(2)

where, for j = 1, . . . , n the cjj are the diagonal elements of

Ct and the
(
zi:λ

t+1
)
j
=
(
xi:λ

t+1
)
j
/(σt

√
(cjj).



This update reduces the computational complexity toO(n)
and allows to exploit problem separability, thus the original
property of being rotationally invariant is lost. The algo-
rithm demonstrated good performance on separable prob-
lems and even outperformed CMA-ES on non-separable Rosen-
brock function for n > 100.
A novel Natural Evolution Strategy (NES) variant, the

Rank-One NES (R1-NES), which uses a low rank approxi-
mation of the search distribution covariance matrix was pro-
posed recently by [23]. The algorithm adapts the search dis-
tribution according to the natural gradient with a particular
parametrization of the covariance matrix,

C = σ2(I+ uuT ), (3)

where u and σ are the parameters to be adjusted. The
adaptation of the predominant eigen-direction u allows the
algorithm to solve highly non-separable problems while main-
taining only O(n) time and space complexity.
A version of CMA-ES with a limited memory storage

also called limited memory CMA-ES (L-CMA-ES) was pro-
posed by [14]. The L-CMA-ES uses the m eigen-vectors and
eigen-values spanning them-dimensional dominant subspace
of the n-dimensional covariance matrix C . The authors
adapted a singular value decomposition updating algorithm
developed in [3] that allowed to avoid the explicit compu-
tation and storage of the covariance matrix. For m < n
the performance in terms of number of function evalua-
tions gradually decreases while enabling the search in Rn

for n > 10000. However, the computational complexity of
O(m2n) practically (for m in order of

√
n [14]) leads to the

same limitations as for the original CMA-ES.
The (µ/µw, λ)-Cholesky-CMA-ES proposed in [24] is of

special interest in this paper because the LM-CMA-ES is
based on this algorithm. The Cholesky-CMA represents a
version of CMA-ES with rank-one update where instead of
performing the factorization of the covariance matrixCt into

AtAtT = Ct, the Cholesky factor At and its inverse At−1

are iteratively updated. From Theorem 1 [24] it follows
that if Ct is updated as

Ct+1 = αCt + βvtvt
T
, (4)

where v ∈ Rn is given in the decomposition form vt =
Atzt, and α, β ∈ R+, then for z ̸= 0 a Cholesky factor of
the matrix Ct+1 can be computed by

At+1 =
√
αAt+

√
α

∥zt∥2

(√
1 +

β

α
∥zt∥2 − 1

)
[Atzt]zt

T
, (5)

for zt = 0 we have At+1 =
√
αAt. From the Theorem

2 [24] it follows that if A−1t is the inverse of At, then the
inverse of At+1 can be computed by

A−1t+1
=

1√
α
A−1t− 1

√
α∥zt∥2

1− 1√
1 + β

α
∥zt∥2

 zt[zt
T
A−1t],

(6)

for zt ̸= 0 and by A−1t+1
= 1√

α
A−1t for zt = 0.

The (µ/µw, λ)-Cholesky-CMA-ES is outlined inAlgorithm
2. As well as in the original CMA-ES, Cholesky-CMA-ES

Algorithm 2 The (µ/µw, λ)-Cholesky-CMA-ES

1: given n ∈ N+, λ = 4 + ⌊3lnn⌋, µ = ⌊λ/2⌋, wi =
ln(µ+1)−ln(i)

µln(µ+1)−
∑µ

j=1 ln(j)
; i = 1 . . . µ, µw = 1∑µ

i=1 w2
i
, cσ =

√
µw√

n+
√

µw
, dσ = 1+ cσ +2max(0,

√
µw−1
n+1

−1), cc = 4
n+4

,

c1 = 2

(n+
√

2)
2

2: initialize mt=0 ∈ Rn, σt=0 > 0,pt=0
σ = 0,pt=0

c =
0,At=0 = I,At=0

inv = I, t← 0
3: repeat
4: for k = 1, . . . , λ do
5: zk = N (0, I)
6: xk = mt + σtAzk
7: fk = f(xk)
8: mt+1 ←

∑µ
i=1 wixi:λ

9: zw ←
∑µ

i=1 wizi:λ
10: pt+1

σ ← (1− cσ)p
t
σ +

√
cσ(2− cσ)

√
µwzw

11: pt+1
c ← (1− cc)p

t
c +

√
cc(2− cc)

√
µwAzw

12: v← At
invpc

13: At+1 =
√
1− c1A

t +
√

1−c1
∥vt∥2

(√
1 + c1

1−c1
∥vt∥2 − 1

)
pcv

tT

14: At+1
inv = 1√

1−c1
At

inv −
1√

1−c1∥vt∥2

(
1− 1√

1+
c1

1−c1
∥vt∥2

)
vt[vt

T
At

inv],

15: σt+1 ← σtexp( cσ
dσ

(
∥pt+1

σ ∥
E∥N(0,I )∥ − 1))

16: t← t+ 1
17: until stopping criterion is met

proceeds by sampling λ candidate solutions (lines 4 - 7) and
taking into account the most successful µ out of λ solu-
tions in the evolution paths adaptation (lines 10 and 11).
However, the eigen-decomposition procedure is not required
anymore because the Cholesky factor and its inverse are up-
dated incrementally (line 13 and 14). This simplifies a lot
the implementation of the algorithm and reduces its time
complexity to O(n2). A postponed update of the Cholesky
factors every O(n) iterations would not reduce the asymp-
totic complexity further (as it does in the original CMA-ES)
because the quadratic complexity will remain due to matrix-
vector multiplications needed to sample new individuals.

The non-elitist Cholesky-CMA is a good alternative to
the original CMA-ES and demonstrates a comparable per-
formance [24]. While it has the same computational and
memory complexity, the lack of rank-µ update may deterio-
rate its performance on problems where it is essential.

3. THE LM-CMA-ES
In this section, we first present main components of the

computationally cheap limited memory CMA-ES and then
introduce the algorithm itself. The components are: a pro-
cedure for reconstruction of Cholesky factors of a covariance
matrix using stored direction vectors, a procedure to store
these vectors and a new procedure for step-size adaptation.

3.1 Reconstruction of Cholesky factors
The idea to reconstruct the inverse Hessian matrix in the

BFGS method [19] enabled its application for large scale
gradient-based optimization. While the CMA-ES is a gradient-
free algorithm, the two algorithms are indeed similar with a
difference that the latter estimates the gradient in a stochas-



Algorithm 3 Az(): Cholesky factor - vector update

1: given z ∈ Rn,m ∈ Z+, j ∈ Zm
+ ,P ∈ Rm×n,V ∈

Rm×n, b ∈ Rm, a ∈ [0, 1]
2: initialize x← z
3: for t = 1, . . . ,min(m, |j|) do
4: k ← bjtV(jt,:)

· x
5: x← ax+ kP(jt,:)

6: return x

Algorithm 4 Ainvz(): inverse Cholesky factor - vector up-
date

1: given z ∈ Rn,m ∈ Z+, j ∈ Zm,V ∈ Rm×n,d ∈ Rm, c ∈
[0, 1]

2: initialize x← z
3: for t = 1, . . . ,min(m, |j|) do
4: k ← djtV(jt,:)

· x
5: x← cx− kV(jt,:)

6: return x

Algorithm 5 UpdateSet(): direction vectors selection

1: given m ∈ R+, j ∈ Zm
+ , l ∈ Zm

+ , t ∈ Z+, Nsteps ∈ Z+

2: if t < m then
3: jt ← t
4: else
5: imin ← 1 + argmini

(
lji+1

− lji
)
, |1 ≤ i ≤ (m− 1)

6: if ljimin
− ljimin−1

≥ Nsteps then
7: imin ← 1
8: if imin ̸= m then
9: jtmp ← jimin

10: for i = imin, . . . ,m− 1 do
11: ji ← ji+1

12: jm ← jtmp

13: jcur ← jmin(t+1,m)

14: ljcur ← t
15: return: jcur, j, l

tic way. This observation inspired us to investigate whether
a similar matrix reconstruction procedure can be used in
CMA-ES as well to reduce its time and space complexity.
As can be seen, the only use of Cholesky factor At in

Algorithm 2 is for sampling of new solutions after Atzk or
for its own update to At+1. By setting a =

√
1− c1 and

bt =
√

1−c1
∥vt∥2

(√
1 + c1

1−c1
∥vt∥2 − 1

)
, one can rewrite the line

(13) as

At+1 = aAt + btpt
cv

tT , (7)

In the following, we show how the vectors needed to sam-
ple new candidate solutions can be obtained without an
explicit storage of Cholesky factors. At iteration t = 0,
A0 = I and A0z = z in line (6) of Algorithm 2, the

new updated Cholesky factor A1 = aI + b0p0
cv

0T . At it-

eration t = 1, A1z = (aI + b0p0
cv

0T )z = az + b0p0
c(v

0T z)

and A2 = a(aI + b0p0
cv

0T ) + b1p1
cv

1T . Thus, a very simple
iterative procedure which scales as O(mn) can be used to
sample candidate solutions in IRn according to the Cholesky
factor At reconstructed from m pairs of vectors pt

c and vt.

The pseudo-code of the procedure to reconstruct x = Atz
from m direction vectors1 is given in Algorithm 3. At
each iteration of reconstruction of x = Atz (lines 3 - 4), x
is updated as a sum of a-weighted version of itself and bt-
weighted evolution path pt

c scaled by the dot product of vt

and x. As can be seen, the Algorithm uses j(t) indexation
instead of t. This is simply a convenient way to have refer-
ences to matrices P and V which store pt

c and vt vectors,
respectively. In the next subsection, we will show how to
efficiently manipulate these vectors.

A very similar approach can be used to reconstruct x =

At−1
z, for the sake of reproducibility the pseudo-code is

given inAlgorithm 4 for c = 1/
√
1− c1 and dt = 1√

1−c1∥vt∥2
×

×
(
1− 1√

1+
c1

1−c1
∥vt∥2

)
. The computational complexity of

both procedures scales as O(mn).

3.2 Direction Vectors Selection and Storage
It is an open question how to use only m ≪ n direction

vectors to obtain a comparable amount of useful information
as stored in the covariance matrix of the original CMA-ES.
For large n and λ ≪ n, evolution path vectors pt

c from the
last m iterations are likely to be quite similar and therefore
to contain only some local information.

In this paper, we propose a simple approach which forces
m selected vectors to be at approximately the same distance
from each other in terms of number of iterations, but at most
with the distance of Nsteps from each other given that the
m-th vector is the one from the last iteration. This selec-
tion procedure is outlined in Algorithm 5 which outputs
an array of pointers j such that j1 points out to a row in
matrices P and V with the oldest saved vectors pc and v
which will be taken into account during the reconstruction
procedure. The higher the index i of ji the more recent the
corresponding direction vector is. The index jcur points out
to the oldest vector which will be replaced by the newest
one in the same iteration when the procedure is called. The
rule to choose a vector to be replaced is the following: find a
pair of consecutively saved vectors with the closest distance
(in terms of number of iterations, stored in l) between each
other (line 5), if this distance is smaller than Nsteps then the
most recent vector will be removed by assigning jcur ← imin,
otherwise the oldest vector among m saved vectors should
be removed. Thus, the procedure gradually replaces vectors
in a way to keep them at approximately the same distance,
but at most at distance of Nsteps iterations.

3.3 Population Success Rule
An elegant success rule for step-size adaptation called the

median success rule was recently proposed in [4]. It is appli-
cable to non-elitist multi-recombinant evolution strategies.
The median success rule compares the median fitness of the
population to a fitness from the previous iteration. The com-
parison fitness is chosen to achieve a target success rate of
1/2. The empirical validation demonstrated that the median
success rule is competitive to CSA [4].

In practice, one should count the number Ksucc of indi-
viduals in the current population better than some j-th best
individual of the previous population, where j depends on

1more precisely, we mean m evolution paths pc and their
inverses v but for brevity we say m direction vectors



n and λ but can be set to be 0.3λ [4]. Then, a normalized
measurement

z ← 2

λ

(
Ksucc −

λ+ 1

2

)
(8)

can be computed such that z ≥ 0 iff the median individual
was successful.
The step-size is adapted as

σ ← σ exp

(
s

dσ

)
, (9)

where s← (1− cσ)s+ cσz and ds = 2(n− 1)/n.
We suppose that while being quite elegant the median

success rule has a potential drawback that we will demon-
strate on an example. Let us suppose that fitness values
(to be minimized) of the previous population are say ft−1 =
[2.1, 3.1, 4.1, 5.1, 6.1, 7.1, 8.1] while the fitness values of the
current population are ft = [1, 2, 3, 4, 5, 6, 7]. According to
the median success rule if j is chosen as, e.g., 3, the number
of successful individual (with fitness values better than or
equal to ft−1(3) = 4.1) is 4 (as ft(1) = 1, ft(2) = 2, ft(3) = 3
and ft(4) = 4). The computed value of Ksucc is then will
be used to adapt the step-size. However, its computation
does not take into account the values of ft−1(i) for 1 ≤ i < j
and even if all such ft−1(i) are better than the best solution
ft(1), this information will not be taken into account.
This potential drawback is not the drawback in a sense

that the median success rule was designed in this way. How-
ever, we suppose that the information omitted in the median
success rule can be useful since it can provide a better esti-
mate whether and by how much the new population is more
successful than the previous one.
In this paper, we introduce the population success rule

(PSR) for step-size adaptation for non-elitist multi-recombinant
evolution strategies. To estimate the success of the current
population we combine fitness function values from the pre-
vious and current population into a mixed set

fmix ← ft−1 ∪ ft (10)

Then, we rank all individual in the mixed set to define
two sets rt−1 and rt containing ranks of individuals of the
previous and current populations ranked in the mixed set.
We compute a normalized success measurement

zPSR ←
∑λ

i=1 rt(i)− rt−1(i)

λ2
− z∗, (11)

where z∗ is a target success ratio. The step-size can be
adapted as in (9).
The proposed population success rule takes into account

all fitness function values from the previous and current gen-
eration. This success rule seems to represent a more general
case of the 1/5th-rule which can be obtained when λ = 1.

3.4 The Algorithm
In the previous subsection we introduced all necessary

components of the (µ/µw, λ)-LM-CMA-ES outlined in Al-
gorithm 6. The algorithm represents a computationally ef-
ficient limited memory version of CMA-ES, where the Cholesky
factor and its inverse are reconstructed from a set of stored
direction vectors (lines 6 and 9). The mutation step-size

Algorithm 6 The (µ/µw, λ)-LM-CMA-ES

1: given n ∈ N+, λ = 4 + ⌊3lnn⌋, µ = ⌊λ/2⌋, wi =
ln(µ+1)−ln(i)

µln(µ+1)−
∑µ

j=1 ln(j)
; i = 1 . . . µ, µw = 1∑µ

i=1 w2
i
, cσ = 0.3,

dσ = 1, m = 4 + ⌊3lnn⌋, Nsteps = m, cc = 1
m
,

c1 = 1
10ln(n+1)

2: initialize mt=0 ∈ Rn, σt=0 > 0,pt=0
c = 0, s← 0, t← 0

3: repeat
4: for k = 1, . . . , λ do
5: zk = N (0, I)
6: xk = mt + σtAz(zk)
7: ftk = f(xk)
8: mt+1 ←

∑µ
i=1 wixi:λ

9: pt+1
c ← (1− cc)p

t
c +

√
cc(2− cc)

√
µw(m

t+1 −mt)/σ

10: v← Ainvz(pt+1
c )

11: jcur ← UpdateSet()
12: V(jcur,:) ← v;P(jcur,:) ← pt+1

c

13: bjcur ←
√

1−c1
∥vt∥2

(√
1 + c1

1−c1
∥vt∥2 − 1

)
14: djcur = 1√

1−c1∥vt∥2

(
1− 1√

1+
c1

1−c1
∥vt∥2

)
,

15: rt, rt−1 ← Ranks of f t and f t−1 in f t ∪ f t−1

16: zPSR ←
∑λ

i=1 rt(i)−rt−1(i)

λ2 − z∗

17: s← (1− cσ)s+ cσzPSR

18: σt+1 ← σtexp(s/dσ)
19: t← t+ 1
20: until stopping criterion is met

is adapted using the population success rule (lines 15 - 13).
The algorithmmemory and time complexity scales asO(mn).

4. SIMULATION RESULTS
In this section, we perform a set of numerical experiments

to assess the performance of the proposed LM-CMA-ES on
large scale optimization problem with n = 128, 256, . . . , 8096.
We investigate the performance on three basic problems:
Sphere function fSphere(x) =

∑n
i=1 x

2
i , separable Ellipsoid

function fElli(x) =
∑n

i=1 10
6 i−1
n−1 x2

i and its rotated version
fElliRot(x) = fElli(Qx), where Q is an orthogonal n × n
matrix with each column vector qi being a uniformly dis-
tributed unit vector implementing an angle-preserving trans-
formation [21].

4.1 Experimental Setting
For the sake of reproducibility, the MATLAB/C++ source

code of all tested algorithms is available at
https://sites.google.com/site/lmcmaeses/.

In the order to estimate the performance of (µ/µw, λ)-LM-
CMA-ES, we compare it with (µ/µw, λ)-Cholesky-CMA-ES
and (µ/µw, λ)-Sep-CMA-ES. We use the default parameters
for Cholesky-CMA-ES and Sep-CMA-ES as given in [24] and
[21], respectively. The parameters of LM-CMA-ES are given
in Algorithm 6. For all problems, the mean mt=0 is initial-
ized in the range [−5, 5]n, the population is sampled with
initial step-size σt=0 = 5 and using the same seed per run.
Note that in all cases we use the default population size
λ = 4 + ⌊3lnn⌋.
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Figure 1: Timing results of LM-CMA-ES on the
separable Ellipsoid compared to sep-CMA-ES and
Cholesky-CMA-ES. The results were computed us-
ing at most 105 function evaluations for sep-CMA-
ES and LM-CMA-ES and using at most 104 for
Cholesky-CMA-ES.

4.2 Memory and Computational Complexity
of LM-CMA-ES

The LM-CMA-ES has O(mn) memory complexity and
more specifically stores Q ∈ Rm×n, V ∈ Rm×n and λ so-
lution vectors xi. For large n and m = λdefault = λ =
4 + ⌊3lnn⌋ used in this paper, the algorithm stores approx-
imately 3mn real-valued parameters. If a real-valued pa-
rameter requires 8 bytes of memory, then for n = 8192 the
LM-CMA-ES will require 5.8 megabytes while the original
CMA-ES would start to reach its limit by requiring 1 giga-
byte of memory. Using the same amount of memory (more
specifically, 1.03 gigabyte), the LM-CMA-ES will able to op-
timize a 1 million dimensional problem. Indeed, by taking
m = 1 even less memory would be needed but the latter
possibility makes sense only if the performance stays at a
reasonable level.
Figure 1 shows how fast CPU time per evaluation scales

for different operations (measured on a 2.0 GHz proces-
sor). Scalar-vector multiplication of a vector with n vari-
ables scales linearly with ca. 6 · 10−10n seconds, evaluation
of the separable Ellipsoid is twice more expensive if a tem-
porary data is used. Sampling of n normally distributed
variables scales as ca. 100 vectors-scalar multiplications.
As can be seen in Figure 1, sampling of zk dominates the
computational overhead of sep-CMA already after n = 128.
The LM-CMA-ES scales almost linearly for n ≥ 1024 as
ca. 1.3 · 10−7n or ca. 200 scalar-vector multiplications.
Matrix-vector multiplication scale quadratically with n and
Cholesky-CMA-ES scales as ca. 1.5-2 matrix-vector multi-
plications.
Practically, the LM-CMA-ES is about 40 times faster (in

terms of its internal computation cost per function evalua-
tion) for n = 2048 and about 140 times faster for n = 8192
than Cholesky-CMA-ES. The LM-CMA-ES is only about 2
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Figure 2: Results of LM-CMA-ES on the Sphere
function compared to sep-CMA-ES and Cholesky-
CMA-ES. Lines show the median of 11 runs for dif-
ferent problem dimensions to reach the target fitness
value of 10−10. The dotted line is an extrapolation.

times slower than sep-CMA-ES, whose cost is dominated by
sampling from normal distribution.

The computation cost of CMA-ES with full covariance
matrix learning limits its applicability for n ≫ 100 and
makes it intractable because of memory for n > 10000.

4.3 Performance on Sphere and Ellipsoid
The Sphere function is often viewed in Evolutionary Com-

putation to be the first function to look at when benchmark-
ing evolutionary algorithms. Figure 2 demonstrates a com-
parable performance of LM-CMA-ES with population suc-
cess rule, sep-CMA-ES with CSA and Cholesky-CMA-ES
with CSA. It should be further studied what is the effect of
the target population success rate (set to z∗ = 0.25) whose
value was chosen the same for all experiments in order to
obtain a reasonable performance on Ellipsoid functions.

Figure 3-Left shows that both LM-CMA-ES and Cholesky-
CMA-ES are rotationally invariant and therefore they opti-
mization runs (one per function) are almost coincide (within
the algorithm). The sep-CMA-ES is not rotationally invari-
ant and therefore it performs better on the separable Ellip-
soid than on its rotated version where the exploitation of
the separability is not that useful. Importantly, the LM-
CMA-ES often outperforms the Cholesky-CMA-ES in the
beginning of optimization, while the adaptation of the full
covariance matrix makes Cholesky-CMA-ES faster at later
stages. Figure 3-Right shows that the loss of performance
of LM-CMA-ES compared to Cholesky-CMA-ES is in order
of a factor of 3-4 given that for n = 2048 the LM-CMA-
ES uses only m = 26 direction vectors. It is important to
keep in mind that for n > 10000 the Cholesky-CMA-ES
becomes intractable both due to its memory and computa-
tional complexity. Then, the sep-CMA-ES becomes an al-
ternative, however, it does not learn dependencies and might
be therefore inefficient (see Figure 3-Left).
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Figure 3: Left: Convergence plots of LM-CMA-ES, sep-CMA-ES and Cholesky-CMA-ES on 128-dimensional
axis-parallel and rotated Ellipsoid functions. Right: The median of 11 runs on separable Ellipsoid function
for different problem dimensions. The dotted lines correspond to extrapolated results by preserving the same
scaling as between the last two actual estimations.

We discussed several large scale ESs in this paper: L-
CMA-ES [14] and R1-NES [23]. We compared the LM-
CMA-ES indirectly by analyzing the results from [14] and
[23]. It takes about 6000 seconds for L-CMA-ES to solve
200-dimensional Ellipsoid after about 7e + 6 function eval-
uations with m =

√
n = 14 and 4000 seconds after 4e + 6

evaluations with m = n/2 = 100. The LM-CMA-ES solves
the same problem after about 125 seconds and 5.3e+6 func-
tion evaluations with m = 19. The performance is compa-
rable while the LM-CMA-ES is about 32 − 48 times faster
that is unlikely to be only due to a different processor or
implementation used. The L-CMA-ES has O(m2n) compu-
tational complexity and therefore it is in order of m times
computationally slower than LM-CMA-ES.
The R1-NES algorithm performs well on non-separable

problems but tends to fail on problems where the learning
of multiple principal components is essential, e.g., it fails on
moderate dimensional rotated Ellipsoid function [23]. On
Rosenbrock function the LM-CMA-ES is about 5 times faster
(not shown) in terms of number of function evaluations for
n = 256, 512. The R1-NES also samples from the normal
distribution, and therefore the lower bound of its computa-
tional complexity is predefined (see Figure 1).
We performed an experiment on 100,000-dimensional sep-

arable Ellipsoid problems for 100,000 function evaluations
(i.e., n evaluations). The original CMA-ES and Cholesky-
CMA-ES cannot be applied due to memory requirements.
The applicability of L-CMA-ES is also limited due to its
O(m2n) computational complexity. The results for sep-
CMA-ES specifically designed for large scale optimization
and the proposed LM-CMA-ES are shown in Figure 4. While
the LM-CMA-ES gradually improves the fitness similarly as
in Figure 3-Left, the sep-CMA-ES does not improve it be-
cause it diverges from the very first iterations. To inves-
tigate whether it is a mistake in our implementation, we

launched the same experiment using the sep-CMA-ES au-
thor’s MATLAB implementation where the divergence was
also observed.

It should be noted that the separable Ellipsoid can be eas-
ily solved by various Evolutionary Algorithms which implic-
itly or explicitly exploit its separability, our purpose of its us-
age is to investigate how the LM-CMA-ES performs on prob-
lems with high dependencies between variables. Given that
the LM-CMA-ES is rotationally invariant, its performance
on both separable and non-separable problems is compara-
ble, but the former is cheaper to compute.

5. DISCUSSION AND CONCLUSION
This paper presents a new approach to efficiently store

and exploit the information about dependencies between de-
cision variables of large scale optimization problems. It al-
lows to reconstruct the Cholesky factor and its inverse using
m≪ n direction vectors that turns out to be sufficient to ob-
tain good performance on large scale problems with highly-
depended variables. The implementation of this approach in
the LM-CMA-ES algorithm makes it possible to optimize a
1 million dimensional problem while learning dependencies
between variables at a cost of about 0.1 second per function
evaluation on an ordinary machine. Indeed, one should not
plan to easily find a global optimum in such a huge search
space, but some local optimization/tuning seems reasonable,
e.g., in Machine Learning problems.

The proposed LM-CMA-ES algorithm is based on the pop-
ulation success rule which looks promising and requires fur-
ther theoretical and empirical investigations. It should be
studied as well whether it can be claimed to represent a
general case of the 1/5th success rule. More experiments
are required to investigate whether and when the lack of
rank-µ update is a limitation.
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Figure 4: LM-CMA-ES and sep-CMA-ES on separa-
ble 100,000-dimensional Ellipsoid problem. The sep-
CMA-ES divergences after the first generation (the
best fitness is shown). Note that the LM-CMA-ES
is rotationally invariant, therefore a similar perfor-
mance is expected on 100,000-dimensional rotated
Ellipsoid.

All parameters chosen for the algorithm were tuned only
moderately and specifically for large n and might require a
significant revision to address a wider set of optimization
problems commonly used for EAs. However, we suppose
that the performance on the Ellipsoid function is already
worth a closer scientific investigation. We envision that sev-
eral directions may further improve the algorithm: i) adap-
tation of m within a fixed range, the impact of m itself
should be studied as well, ii) since the population success
rule does not make any assumptions about the sampling
distribution, the Gaussian sampling can be removed that
would further speed-up the algorithm (e.g., to replace CSA
by PSR in CMA-ES).
The speculations about a possibility of having CMA-ES

like evolutionary processes going on in nature often end up
around a hypothesis that there is no such a thing in natural
evolution as a full covariance matrix and its update. One
may suppose that only a limited number of direction vectors
is stored to adjust the mutation in promising directions.
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