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@ Hard to find segments of the Pareto front
@ Some parents improve the fithess faster than other
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-O-CMA-ES ?

aro-(1+1)-CMA-ES = px (1+1)-CMA-ES + global Pareto selection
@ CMA-ES excellent on single-objective problems (e.g., BBOB)

@ In upr0-(1+1)-CMA-ES, each individual is a (1+1)-CMA-ES
1

Objective 2
Objective 2

Objective 1 Objective 1

Two typical adaptations for MO-CMA-ES

lc. Igel, N. Hansen, and S. Roth (2005). "The Multi-objective Variable Metric Evolution Strategy"
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A total preorder relation <x is defined on any finite subset X:

z <x y< PRank(z,X) < PRank(y, X) I/ lower Pareto rank
or /I same Pareto rank and higher Hypervolume Contribution
PRank(xz,X) = PRank(y,X) and AH(z,X) > AH(y, X)

Tournament (u +; 1) selection for MOO

Input: tournament size ¢t € N ; population of y individuals X
Procedure: uniformly select ¢ individuals from X
Output: the best individual among ¢ according to < x criterion

With ¢ = 1: standard steady-state MO-CMA-ES with random selection @

aC. Igel, T. Suttorp, and N. Hansen (EMO 2007). "Steady-state Selection and Efficient
Covariance Matrix Update in the Multi-objective CMA-ES"
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-ti-armed Bandits

Original Multi-armed Bandits (MAB) problem

. A gambler plays arm (machine) j at time ¢

1 with prob. p

‘ 0 with prob. (1-p)
Z Goal: maximize the sum of rewards

and wins reward : r;; = {

Upper Confidence Bound (UCB) [Auer, 2002]

Initialization: play each arm once
Loop: play arm j that maximizes:

_ 2Ind", ngt
. E Tk,
’r]at + C Nyt 9

T+ average reward of arm j
where ' .
n;: humber of plays of arm j

v
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MAB for MOO

7;+ is the average reward along a time window of size w

n,; + = 0 for new offspring or for an individual selected w steps ago

i with n; » = 0 if exist,

1 = Argmazx {ijt +C %’1”“} otherwise
Js

At the moment, C' = 0 (exploration iff n; ; = 0)

select parent i =

1. @ = ParentSelection()
2. O = @+mutation

3. Is O successful ?

4. Update @ and O

5. ComputeRewards()

Objective 2

Objective 1
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-ning Rewards I: (1 + 1ouce), (1 + Lrank)

Parent a from the population Q9 generates offspring o’'.
Both the offspring and the parent receive reward r:

(,“‘ aF 1311(:(;)
If ' becomes member of new population Q(9+1):

r=1ifa € QWY and 0 otherwise

(,U + ]-rank)
A smoother reward is defined by the rank of o/ in Q(9+1):

_ rank(a’)

r=1 ifa’ € QYUY and 0 otherwise
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.ining Rewards II: (1 + 1am,), (1 + 1am,)

Set the reward to the increase of the total Hypervolume contribution
from generation g to g + 1:

__ [ 0if offspring is dominated
" Sacotin AH(@, QW) = o) AH(a, Q1) otherwise

(n+1amH,)
A relaxation of the above reward, involving a rank-based penalization:

r:2k1_1( D AH(andomy(QT)) - ZAH(a,ndomk(Q(g)))>

ndomy, (Q(911)) ndomy, (Q(9))

where k denotes the Pareto rank of the current offspring, and
ndomy (Q(9)) is k-th non-dominated front of Q(9).
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Algorithms

@ The steady-state MO-CMA-ES with modified parent selection:
- 2 tournament-based: (p 42 1) and (x +10 1);
-4 MAB-based: (i + lsuce), (t + lrank), (0 + 1am,) and (u+ 1am,).
@ The baseline MO-CMA-ES:
- steady-state (¢ + 1)-MO-CMA , (u< + 1)-MO-CMA and generational
(1 + 11)-MO-CMA.

Default parameters (1 = 100), 200,000 evaluations, 31 runs.

Benchmark Problems:

@ sZDT1:3-6 with the true Pareto front shifted in decision space:
xp <+ |z; — 0.5/ for2<i<n

@ IHR1:3-6 rotated variants of the original ZDT problems

@ LZ09-1:5 with complicated Pareto front in decision space 2

2H. Liand Q. Zhang. "Multiobjective Optimization Problems With Complicated Pareto Sets,
MOEA/D and NSGA-II." IEEE TEC 2009
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sZDT2

+  All populations of MO-CMA-ES
e True Pareto Front
o Pareto Front of MO-CMA- ES
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Typical behavior of (1 + 1succ)-MO-CMA on sZDT2 (left) and IHR3 (right)
problems after 5,000 fitness function evaluations.
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~ Summary

@ Speed-up (factor 2-5) with MAB schemes: (p + 1rank) and (p+ 1am,).

@ Loss of diversity, especially on multi-modal problems. Too greedy
schemes: (1 + lsuec) @and (p +: 1).

Perspectives

2In) 3, ng
njt )

@ Allocate some budget of evaluations for dominated arms (individuals)
generated in the past to preserve the diversity.

@ Integrate the reward mechanism and update rules of (1+1)-CMA-ES,
e.g. success rate and average reward in (pu + lrank).

@ Experiments on Many-objective problems.

@ Find "appropriate” C for exploration term 7;; + C'
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Thank you for your attention !

Please send your questions to
{llya.Loshchilov,Marc.Schoenauer,Michele.Sebag}@inria.fr
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